from __future__ import annotations
import copy
import json
import random
import string
import warnings
from typing import Any, Dict, List, MutableMapping, MutableSequence, Union, cast
import networkx as nx
import pandas as pd
from IPython.core.display import HTML, display
from retentioneering import RETE_CONFIG
from retentioneering.backend import ServerManager
from retentioneering.backend.tracker import track
from retentioneering.edgelist import Edgelist
from retentioneering.eventstream.types import EventstreamType
from retentioneering.nodelist import Nodelist
from retentioneering.templates.transition_graph import TransitionGraphRenderer
from retentioneering.tooling.typing.transition_graph import (
GraphSettings,
LayoutNode,
NodeParams,
NormType,
Position,
PreparedLink,
PreparedNode,
Threshold,
Weight,
)
from retentioneering.utils.dict import clear_dict
RenameRule = Dict[str, Union[List[str], str]]
SESSION_ID_COL = "session_id"
[docs]class TransitionGraph:
"""
A class that holds methods for transition graph visualization.
Parameters
----------
eventstream: EventstreamType
Source eventstream.
See Also
--------
.Eventstream.transition_graph : Call TransitionGraph tool as an eventstream method.
.Eventstream.transition_matrix : Matrix representation of transition graph.
.EventstreamSchema : Schema of eventstream columns, that could be used as weights.
.TransitionGraph.plot : Interactive transition graph visualization.
Notes
-----
See :doc:`transition graph user guide</user_guides/transition_graph>` for the details.
"""
_weights: MutableMapping[str, str] | None = None
_edges_norm_type: NormType = None
_nodes_norm_type: NormType = None
_nodes_threshold: Threshold
_edges_threshold: Threshold
@property
def nodes_thresholds(self) -> Threshold:
return self._nodes_threshold
@nodes_thresholds.setter
def nodes_thresholds(self, value: Threshold) -> None:
if self._check_thresholds_for_norm_type(value=value, norm_type=self.nodes_norm_type):
self._nodes_threshold = value
@property
def edges_thresholds(self) -> Threshold:
return self._edges_threshold
@edges_thresholds.setter
def edges_thresholds(self, value: Threshold) -> None:
if self._check_thresholds_for_norm_type(value=value, norm_type=self.edges_norm_type):
self._edges_threshold = value
def _check_thresholds_for_norm_type(self, value: Threshold, norm_type: NormType) -> bool:
if norm_type is None:
if not all(map(lambda x: x is None or x >= 0, value.values())):
raise ValueError(f"For normalization type {norm_type} all thresholds must be positive or None")
else:
if not all(map(lambda x: x is None or 0 <= x <= 1, value.values())):
raise ValueError(f"For normalization type {norm_type} all thresholds must be between 0 and 1 or None")
return True
@track( # type: ignore
tracking_info={"event_name": "init"},
scope="transition_graph",
)
def __init__(
self,
eventstream: EventstreamType, # graph: dict, # preprocessed graph
) -> None:
from retentioneering.eventstream.eventstream import Eventstream
sm = ServerManager()
self.env = sm.check_env()
self.server = sm.create_server()
self.server.register_action("save-nodelist", lambda n: self._on_nodelist_updated(n))
self.server.register_action("save-layout", lambda n: self._on_layout_request(n))
self.server.register_action("save-graph-settings", lambda n: self._on_graph_settings_request(n))
self.server.register_action("recalculate", lambda n: self._on_recalc_request(n))
self.eventstream: Eventstream = eventstream # type: ignore
self.event_col = self.eventstream.schema.event_name
self.event_time_col = self.eventstream.schema.event_timestamp
self.user_col = self.eventstream.schema.user_id
self.spring_layout_config = {"k": 0.1, "iterations": 300, "nx_threshold": 1e-4}
self.layout: pd.DataFrame | None = None
self.graph_settings: GraphSettings | dict[str, Any] = {}
self.render: TransitionGraphRenderer = TransitionGraphRenderer()
def _define_weight_cols(self, custom_weight_cols: list[str] | None) -> list[str]:
weight_cols = [
self.eventstream.schema.event_id,
self.eventstream.schema.user_id,
]
if SESSION_ID_COL in self.eventstream.schema.custom_cols:
weight_cols.append(SESSION_ID_COL)
if isinstance(custom_weight_cols, list):
for col in custom_weight_cols:
if col not in weight_cols:
if col not in self.eventstream.schema.custom_cols:
raise ValueError(f"Custom weights column {col} not found in eventstream schema")
else:
weight_cols.append(col)
return weight_cols
@property
def weights(self) -> MutableMapping[str, str] | None:
return self._weights
@weights.setter
def weights(self, value: MutableMapping[str, str] | None) -> None:
available_cols = self.__get_nodelist_cols()
if value and ("edges" not in value or "nodes" not in value):
raise ValueError("Allowed only: %s" % {"edges": "col_name", "nodes": "col_name"})
if value and (value["edges"] not in available_cols or value["nodes"] not in available_cols):
raise ValueError("Allowed only: %s" % {"edges": "col_name", "nodes": "col_name"})
self._weights = value
@property
def edges_norm_type(self) -> NormType: # type: ignore
return self._edges_norm_type
@edges_norm_type.setter
def edges_norm_type(self, edges_norm_type: NormType) -> None: # type: ignore
allowed_edges_norm_types: list[str | None] = [None, "full", "node"]
if edges_norm_type in allowed_edges_norm_types:
self._edges_norm_type = edges_norm_type
else:
raise ValueError("Norm type should be one of: %s" % allowed_edges_norm_types)
@property
def nodes_norm_type(self) -> NormType: # type: ignore
return self._nodes_norm_type
@nodes_norm_type.setter
def nodes_norm_type(self, nodes_norm_type: NormType) -> None: # type: ignore
if nodes_norm_type is not None:
warnings.warn(f"Currently nodes_norm_type allowed to be None only")
self._nodes_norm_type = None
def _on_recalc_request(
self, rename_rules: list[RenameRule]
) -> dict[str, MutableSequence[PreparedNode] | MutableSequence[PreparedLink] | list]:
try:
self._recalculate(rename_rules=rename_rules)
nodes, nodes_set = self._prepare_nodes(
nodelist=self.nodelist.nodelist_df,
)
self._on_nodelist_updated(nodes)
edgelist = self.edgelist.edgelist_df
edgelist["type"] = "suit"
links = self._prepare_edges(edgelist=edgelist, nodes_set=nodes_set)
result: dict[str, MutableSequence[PreparedNode] | MutableSequence[PreparedLink] | list] = {
"nodes": nodes,
"links": links,
}
return result
except Exception as err:
raise ValueError("error! %s" % err)
def _recalculate(self, rename_rules: list[RenameRule]) -> None:
eventstream = self.eventstream.copy()
# frontend can ask recalculate without grouping or renaming
if len(rename_rules) > 0:
eventstream = eventstream.rename(rules=rename_rules) # type: ignore
renamed_df = eventstream.to_dataframe()
# save norm type
recalculated_nodelist = self.nodelist.calculate_nodelist(data=renamed_df)
self.edgelist.eventstream = eventstream
recalculated_edgelist = self.edgelist.calculate_edgelist(
weight_cols=self.weight_cols, norm_type=self.edges_norm_type
)
curr_nodelist = self.nodelist.nodelist_df
self.nodelist.nodelist_df = curr_nodelist.apply(
lambda x: self._update_node_after_recalc(recalculated_nodelist, x), axis=1
)
self.edgelist.edgelist_df = recalculated_edgelist
def _replace_grouped_events(self, grouped: pd.Series, row: pd.Series) -> pd.Series:
event_name = row[self.event_col]
mathced = grouped[grouped[self.event_col] == event_name]
if len(mathced) > 0:
parent_node_name = mathced.iloc[0]["parent"]
row[self.event_col] = parent_node_name
return row
def _update_node_after_recalc(self, recalculated_nodelist: pd.DataFrame, row: pd.Series) -> pd.Series:
cols = self.__get_nodelist_cols()
node_name = row[self.event_col]
matched: pd.Series[Any] = recalculated_nodelist[recalculated_nodelist[self.event_col] == node_name]
if len(matched) > 0:
recalculated_node = matched.iloc[0]
for col in cols:
row[col] = recalculated_node[col]
return row.copy()
def _on_graph_settings_request(self, settings: GraphSettings) -> None:
self.graph_settings = settings
def _on_layout_request(self, layout_nodes: MutableSequence[LayoutNode]) -> None:
self.graph_updates = layout_nodes
self.layout = pd.DataFrame(layout_nodes)
def _on_nodelist_updated(self, nodes: MutableSequence[PreparedNode]) -> None:
# prepare data, map cols
mapped_nodes = []
for i, n in enumerate(nodes):
source_node = cast(dict, n)
mapped_node = {}
for key, source_value in source_node.items():
if key == "degree":
for col_name, deg in source_value.items():
mapped_node[col_name] = deg["source"]
continue
if key == "name":
mapped_node[self.event_col] = source_value
continue
if key == "index":
mapped_node["index"] = source_value
continue
# filter fields
if key not in self.nodelist.nodelist_df.columns:
continue
mapped_node[key] = source_value
mapped_nodes.append(mapped_node)
self.nodelist.nodelist_df = pd.DataFrame(data=mapped_nodes)
self.nodelist.nodelist_df.set_index("index")
self.nodelist.nodelist_df = self.nodelist.nodelist_df.drop(columns=["index"])
def _make_node_params(
self, targets: MutableMapping[str, str | None] | None = None
) -> MutableMapping[str, str | None] | dict[str, str | None]:
if targets is not None:
return self._map_targets(targets) # type: ignore
else:
return self._map_targets(self.targets) # type: ignore
def _get_norm_link_threshold(self, links_threshold: Threshold | None = None) -> dict[str, float] | None:
nodelist_default_col = self.nodelist_default_col
edgelist_default_col = self.edgelist_default_col
scale = float(cast(float, self.edgelist.edgelist_df[edgelist_default_col].abs().max()))
norm_links_threshold = None
if links_threshold is not None:
norm_links_threshold = {}
for key in links_threshold:
if key == nodelist_default_col:
norm_links_threshold[nodelist_default_col] = links_threshold[nodelist_default_col] / scale
else:
s = float(cast(float, self.edgelist.edgelist_df[key].abs().max()))
norm_links_threshold[key] = links_threshold[key] / s
return norm_links_threshold
def _get_norm_node_threshold(self, nodes_threshold: Threshold | None = None) -> Threshold | None:
norm_nodes_threshold = None
if nodes_threshold is not None:
norm_nodes_threshold = {}
for key in nodes_threshold:
scale = float(cast(float, self.nodelist.nodelist_df[key].abs().max()))
norm_nodes_threshold[key] = nodes_threshold[key] / scale
return norm_nodes_threshold
def _calc_layout(self, edgelist: pd.DataFrame, width: int, height: int) -> Position:
G = nx.DiGraph()
source_col = edgelist.columns[0]
target_col = edgelist.columns[1]
weight_col = edgelist.columns[2]
G.add_weighted_edges_from(edgelist.loc[:, [source_col, target_col, weight_col]].values)
pos = nx.layout.spring_layout(
G,
k=self.spring_layout_config["k"],
iterations=self.spring_layout_config["iterations"],
threshold=self.spring_layout_config["nx_threshold"],
seed=0,
)
all_x_coords: list[float] = []
all_y_coords: list[float] = []
for j in pos.values():
all_x_coords.append(j[0])
all_y_coords.append(j[1])
min_x = min(all_x_coords)
min_y = min(all_y_coords)
max_x = max(all_x_coords)
max_y = max(all_y_coords)
pos_new: Position = {
i: [
(j[0] - min_x) / (max_x - min_x) * (width - 150) + 75,
(j[1] - min_y) / (max_y - min_y) * (height - 100) + 50,
]
for i, j in pos.items()
}
return pos_new
def __get_nodelist_cols(self) -> list[str]:
default_col = self.nodelist_default_col
custom_cols = self.weight_cols
return list([default_col]) + list(custom_cols)
def __round_value(self, value: float) -> float:
if self.edges_norm_type in ["full", "node"]:
# @TODO: make this magical number as constant or variable from config dict. Vladimir Makhanov
return round(value, 5)
else:
return value
def _prepare_nodes(
self, nodelist: pd.DataFrame, node_params: NodeParams | None = None, pos: Position | None = None
) -> tuple[list, MutableMapping]:
node_names = set(nodelist[self.event_col])
cols = self.__get_nodelist_cols()
nodes_set: MutableMapping[str, PreparedNode] = {}
for idx, node_name in enumerate(node_names):
row = nodelist.loc[nodelist[self.event_col] == node_name]
degree = {}
for weight_col in cols:
max_degree = cast(float, nodelist[weight_col].max())
r = row[weight_col]
r = r.tolist()
value = r[0]
curr_degree = {}
curr_degree["degree"] = self.__round_value((abs(value)) / abs(max_degree) * 30 + 4)
curr_degree["source"] = self.__round_value(value)
degree[weight_col] = curr_degree
node_pos = pos.get(node_name) if pos is not None else None
active = cast(bool, row["active"].tolist()[0])
alias = cast(str, row["alias"].to_list()[0])
parent = cast(str, row["parent"].to_list()[0])
type = node_params.get(node_name) or "suit" if node_params is not None else "suit"
node: PreparedNode = {
"index": idx,
"name": node_name,
"degree": degree,
"type": type + "_node",
"active": active,
"alias": alias,
"parent": parent,
"changed_name": None,
"x": None,
"y": None,
}
if node_pos is not None:
node["x"] = node_pos[0]
node["y"] = node_pos[1]
nodes_set.update({node_name: node})
return list(nodes_set.values()), nodes_set
def _prepare_edges(
self, edgelist: pd.DataFrame, nodes_set: MutableMapping[str, PreparedNode]
) -> MutableSequence[PreparedLink]:
default_col = self.nodelist_default_col
source_col = edgelist.columns[0]
target_col = edgelist.columns[1]
weight_col = edgelist.columns[2]
custom_cols: list[str] = self.weight_cols
edges: MutableSequence[PreparedLink] = []
edgelist["weight_norm"] = edgelist[weight_col] / edgelist[weight_col].abs().max()
for _, row in edgelist.iterrows():
default_col_weight: Weight = {
"weight_norm": self.__round_value(row.weight_norm),
"weight": self.__round_value(cast(float, row[weight_col])), # type: ignore
}
weights = {
default_col: default_col_weight,
}
for custom_weight_col in custom_cols:
weight = self.__round_value(cast(float, row[custom_weight_col]))
max_weight = cast(float, edgelist[custom_weight_col].abs().max())
weight_norm = self.__round_value(weight / max_weight)
col_weight: Weight = {
"weight_norm": weight_norm,
"weight": weight,
}
weights[custom_weight_col] = col_weight
source_node_name = str(row[source_col]) # type: ignore
target_node_name = str(row[target_col]) # type: ignore
source_node = nodes_set.get(source_node_name)
target_node = nodes_set.get(target_node_name)
if source_node is not None:
if target_node is not None:
edges.append(
{
"sourceIndex": source_node["index"],
"targetIndex": target_node["index"],
"weights": weights,
"type": cast(str, row["type"]),
}
)
return edges
def _make_template_data(
self, node_params: NodeParams, width: int, height: int
) -> tuple[MutableSequence, MutableSequence[PreparedLink]]:
edgelist = self.edgelist.edgelist_df.copy()
nodelist = self.nodelist.nodelist_df.copy()
source_col = edgelist.columns[0]
target_col = edgelist.columns[1]
# calc edge type
edgelist["type"] = edgelist.apply(
lambda x: node_params.get(x[source_col]) # type: ignore
if node_params.get(x[source_col]) == "source"
else node_params.get(x[target_col]) or "suit",
1, # type: ignore
)
pos = self._use_layout(self._calc_layout(edgelist=edgelist, width=width, height=height))
nodes, nodes_set = self._prepare_nodes(nodelist=nodelist, pos=pos, node_params=node_params)
links = self._prepare_edges(edgelist=edgelist, nodes_set=nodes_set)
return nodes, links
def _use_layout(self, position: Position) -> Position:
if self.layout is None:
return position
for node_name in position:
matched = self.layout[self.layout["name"] == node_name]
if not matched.empty:
x = cast(float, matched["x"].item())
y = cast(float, matched["y"].item())
position[node_name] = [x, y]
return position
def _to_json(self, data: Any) -> str:
return json.dumps(data).encode("latin1").decode("utf-8")
def _to_json_links(self, data: MutableSequence[PreparedLink]) -> str:
# We need to remove links with zero weight
cleaned_data = []
for link in data:
cleaned_link = copy.deepcopy(link)
cleaned_link["weights"] = {
weight_col: weight for weight_col, weight in link["weights"].items() if weight["weight"] > 0
}
cleaned_data.append(cleaned_link)
return self._to_json(cleaned_data)
def _apply_settings(
self,
show_weights: bool | None = None,
show_percents: bool | None = None,
show_nodes_names: bool | None = None,
show_all_edges_for_targets: bool | None = None,
show_nodes_without_links: bool | None = None,
) -> dict[str, Any]:
settings = {
"show_weights": show_weights,
"show_percents": show_percents,
"show_nodes_names": show_nodes_names,
"show_all_edges_for_targets": show_all_edges_for_targets,
"show_nodes_without_links": show_nodes_without_links,
}
# @FIXME: idk why pyright doesn't like this. Vladimir Makhanov
merged = {**self.graph_settings, **clear_dict(settings)} # type: ignore
return clear_dict(merged)
def _map_targets(self, targets: dict[str, str | list[str]]) -> dict[str, str]:
targets_mapping = {
"positive": "nice",
"negative": "bad",
"source": "source",
}
mapped_targets = {}
for target, nodes in targets.items():
if nodes is None:
pass
if isinstance(nodes, list):
for node in nodes:
mapped_targets[node] = targets_mapping[target]
else:
mapped_targets[nodes] = targets_mapping[target]
return mapped_targets
def _to_js_val(self, val: Any = None) -> str:
return self._to_json(val) if val is not None else "undefined"
@staticmethod
def generateId(size: int = 6, chars: str = string.ascii_uppercase + string.digits) -> str:
return "el" + "".join(random.choice(chars) for _ in range(size))
def _edges_norm_type_to_json_value(self, edges_norm_type: NormType) -> str:
return "none" if edges_norm_type is None else str(edges_norm_type).lower()
[docs] @track( # type: ignore
tracking_info={"event_name": "plot"},
scope="transition_graph",
allowed_params=[
"edges_norm_type",
"targets",
"nodes_threshold",
"edges_threshold",
"nodes_weight_col",
"edges_weight_col",
"custom_weight_cols",
"width",
"height",
"show_weights",
"show_percents",
"show_nodes_names",
"show_all_edges_for_targets",
"show_nodes_without_links",
],
)
def plot(
self,
targets: MutableMapping[str, str | None] | None = None,
edges_norm_type: NormType | None = None,
nodes_threshold: Threshold | None = None,
nodes_norm_type: NormType | None = None,
edges_threshold: Threshold | None = None,
nodes_weight_col: str | None = None,
edges_weight_col: str | None = None,
custom_weight_cols: list[str] | None = None,
width: int = 960,
height: int = 600,
show_weights: bool = True,
show_percents: bool = False,
show_nodes_names: bool = True,
show_all_edges_for_targets: bool = True,
show_nodes_without_links: bool = False,
) -> None:
"""
Create interactive transition graph visualization with callback to sourcing eventstream.
Parameters
----------
edges_norm_type : {"full", "node", None}, default None
Type of normalization that is used to calculate weights for graph edges.
Based on ``edges_weight_col`` parameter the weight values are calculated.
- If ``None``, normalization is not used, the absolute values are taken.
- If ``full``, normalization across the whole eventstream.
- If ``node``, normalization across each node (or outgoing transitions from each node).
See :ref:`Transition graph user guide <transition_graph_weights>` for the details.
nodes_norm_type : {"full", "node", None}, default None
Currently not implemented. Always None.
edges_weight_col : str, optional
A column name from the :py:class:`.EventstreamSchema` which values will control the final
edges' weights and displayed width as well.
For each edge is calculated:
- If ``None`` or ``event_id`` - the number of transitions.
- If ``user_id`` - the number of unique users.
- If ``session_id`` - the number of unique sessions.
- If ``custom_col`` - the number of unique values in selected column.
See :ref:`Transition graph user guide <transition_graph_weights>` for the details.
edges_threshold : dict, optional
Threshold mapping that defines the minimal weights for edges displayed on the canvas.
- Keys should be of type str and contain the weight column names (the values from the
:py:class:`.EventstreamSchema`).
- Values of the dict are the thresholds for the edges that will be displayed.
Support multiple weighting columns. In that case, logical OR will be applied.
Edges with value less than at least one of thresholds will be hidden.
Example: {'event_id': 100, user_id: 50}.
See :ref:`Transition graph user guide<transition_graph_thresholds>` for the details.
nodes_weight_col : str, optional
A column name from the :py:class:`.EventstreamSchema` which values control the final
nodes' weights and displayed diameter as well.
For each node is calculated:
- If ``None`` or ``event_id`` - the number of events.
- If ``user_id`` - the number of unique users.
- If ``session_id`` - the number of unique sessions.
- If ``custom_col`` - the number of unique values in selected column.
See :ref:`Transition graph user guide <transition_graph_weights>` for the details.
nodes_threshold : dict, optional
Threshold mapping that defines the minimal weights for nodes displayed on the canvas.
- Keys should be of type str and contain the weight column names (the values from the
:py:class:`.EventstreamSchema`).
- Values of the dict are the thresholds for the nodes that will be displayed.
They should be of type int or float.
Support multiple weighting columns. In that case, logical OR will be applied.
Nodes with value less than at least one of thresholds will be hidden.
Example: {'event_id': 100, user_id: 50}.
See :ref:`Transition graph user guide<transition_graph_thresholds>` for the details.
targets : dict, optional
Events mapping that defines which nodes and edges should be colored for better visualization.
- Possible keys: "positive" (green), "negative" (red), "source" (orange).
- Possible values: list of events of a given type.
See :ref:`Transition graph user guide<transition_graph_targets>` for the details.
custom_weight_cols : list of str, optional
Custom columns from the :py:class:`.EventstreamSchema` that can be selected in ``edges_weight_col``
and ``nodes_weight_col`` parameters. If ``session_col=session_id`` exists,
it is added by default to this list.
width : int, default 960
Width of plot in pixels.
height : int, default 600
Height of plot in pixels.
show_weights : bool, default True
Hide/display the edge weight labels. By default, weights are shown.
show_percents : bool, default False
Display edge weights as percents. Available only if an edge normalization type is chosen.
By default, weights are displayed in fractions.
show_nodes_names : bool, default True
Hide/display the node names. By default, names are shown.
show_all_edges_for_targets : bool, default True
This displaying option allows to ignore the threshold filters and always display
any edge connected to a target node. By default, all such edges are shown.
show_nodes_without_links : bool, default False
Setting a threshold filter might remove all the edges connected to a node.
Such isolated nodes might be considered as useless. This displaying option
hides them in the canvas as well.
@TODO: add show_edge_info_on_hover Ticket: https://retentioneering.atlassian.net/browse/PLAT-776. dpanina.
Returns
-------
Rendered IFrame graph.
Notes
-----
1. If all the edges connected to a node are hidden, the node becomes hidden as well.
In order to avoid it - use ``show_nodes_without_links=True`` parameter in code or in the interface.
2. The thresholds may use their own weighting columns both for nodes and for edges independently
of weighting columns defined in ``edges_weight_col`` and ``nodes_weight_col`` arguments.
See :doc:`TransitionGraph user guide </user_guides/transition_graph>` for the details.
"""
if edges_norm_type is None and show_percents:
raise ValueError("If show_percents=True, edges_norm_type should be 'full' or 'node'!")
self.__prepare_graph_for_plot(
edges_weight_col=edges_weight_col,
edges_threshold=edges_threshold,
edges_norm_type=edges_norm_type,
nodes_norm_type=nodes_norm_type,
nodes_weight_col=nodes_weight_col,
nodes_threshold=nodes_threshold,
targets=targets,
custom_weight_cols=custom_weight_cols,
)
norm_nodes_threshold = (
self.nodes_thresholds if self.nodes_thresholds else self._get_norm_node_threshold(self.nodes_thresholds)
)
norm_links_threshold = (
self.edges_thresholds if self.edges_thresholds else self._get_norm_link_threshold(self.edges_thresholds)
)
node_params = self._make_node_params(targets)
cols = self.__get_nodelist_cols()
settings = self._apply_settings(
show_weights=show_weights,
show_percents=show_percents,
show_nodes_names=show_nodes_names,
show_all_edges_for_targets=show_all_edges_for_targets,
show_nodes_without_links=show_nodes_without_links,
)
nodes, links = self._make_template_data(
node_params=node_params,
width=width,
height=height,
)
shown_nodes_col = self.nodes_weight_col
shown_links_weight = self.edges_weight_col
selected_nodes_col_for_thresholds = shown_nodes_col
selected_links_weight_for_thresholds = shown_links_weight
init_graph_js = self.render.init(
**dict(
server_id=self.server.pk,
env=self.env,
norm_type=self._edges_norm_type_to_json_value(self.edges_norm_type),
links=self._to_json_links(links),
nodes=self._to_json(nodes),
node_params=self._to_json(node_params),
layout_dump=1 if self.layout is not None else 0,
links_weights_names=cols,
node_cols_names=cols,
shown_nodes_col=shown_nodes_col,
shown_links_weight=shown_links_weight,
selected_nodes_col_for_thresholds=selected_nodes_col_for_thresholds,
selected_links_weight_for_thresholds=selected_links_weight_for_thresholds,
show_weights=self._get_option("show_weights", settings),
show_percents=self._get_option("show_percents", settings),
show_nodes_names=self._get_option("show_nodes_names", settings),
show_all_edges_for_targets=self._get_option("show_all_edges_for_targets", settings),
show_nodes_without_links=self._get_option("show_nodes_without_links", settings),
nodes_threshold=self._to_js_val(norm_nodes_threshold),
links_threshold=self._to_js_val(norm_links_threshold),
weight_template="undefined",
tracking_hardware_id=RETE_CONFIG.user.pk,
)
)
graph_body = self.render.body()
graph_script_src = (
"https://static.server.retentioneering.com/package/@rete/transition-graph/version/1/dist/transition-graph.umd.js?id="
+ self.generateId()
)
init_graph_template = self.render.init(
**dict(
server_id=self.server.pk,
env=self.env,
norm_type=self._edges_norm_type_to_json_value(self.edges_norm_type),
node_params=self._to_json(node_params),
links="<%= links %>",
nodes="<%= nodes %>",
layout_dump=1,
links_weights_names=cols,
node_cols_names=cols,
shown_nodes_col="<%= shown_nodes_col %>",
shown_links_weight="<%= shown_links_weight %>",
selected_nodes_col_for_thresholds="<%= selected_nodes_col_for_thresholds %>",
selected_links_weight_for_thresholds="<%= selected_links_weight_for_thresholds %>",
show_weights="<%= show_weights %>",
show_percents="<%= show_percents %>",
show_nodes_names="<%= show_nodes_names %>",
show_all_edges_for_targets="<%= show_all_edges_for_targets %>",
show_nodes_without_links="<%= show_nodes_without_links %>",
nodes_threshold="<%= nodes_threshold %>",
links_threshold="<%= links_threshold %>",
weight_template="undefined",
tracking_hardware_id=RETE_CONFIG.user.pk,
)
)
html_template = self.render.full(
**dict(
content=self.render.inner_iframe(
**dict(
id=self.generateId(),
width=width,
height=height,
graph_body=graph_body,
graph_script_src=graph_script_src,
init_graph_js=init_graph_template,
template="",
)
),
)
)
html = self.render.inner_iframe(
**dict(
id=self.generateId(),
width=width,
height=height,
graph_body=graph_body,
graph_script_src=graph_script_src,
init_graph_js=init_graph_js,
template=html_template,
)
)
display(HTML(html))
def __prepare_graph_for_plot(
self,
edges_weight_col: str | None = None,
edges_threshold: Threshold | None = None,
nodes_weight_col: str | None = None,
nodes_threshold: Threshold | None = None,
edges_norm_type: NormType | None = None,
nodes_norm_type: NormType | None = None,
targets: MutableMapping[str, str | None] | None = None,
custom_weight_cols: list[str] | None = None,
) -> None:
if targets:
self.targets = targets
self.edges_norm_type = edges_norm_type
if nodes_threshold is None:
nodes_threshold = {"user_id": 0.0, "event_id": 0.0}
self.nodes_thresholds = nodes_threshold
if edges_threshold is None:
edges_threshold = {"user_id": 0.0, "event_id": 0.0}
self.edges_thresholds = edges_threshold
self.nodelist_default_col = self.eventstream.schema.event_id
self.edgelist_default_col = self.eventstream.schema.event_id
self.targets = targets if targets else {"positive": None, "negative": None, "source": None}
self.weight_cols = self._define_weight_cols(custom_weight_cols)
self.nodes_weight_col = nodes_weight_col if nodes_weight_col else self.eventstream.schema.event_id
self.edges_weight_col = edges_weight_col if edges_weight_col else self.eventstream.schema.event_id
self.nodes_norm_type = nodes_norm_type
self.nodelist: Nodelist = Nodelist(
weight_cols=self.weight_cols,
time_col=self.event_time_col,
event_col=self.event_col,
)
self.nodelist.calculate_nodelist(data=self.eventstream.to_dataframe())
self.edges_norm_type: NormType | None = edges_norm_type
self.edgelist: Edgelist = Edgelist(eventstream=self.eventstream)
self.edgelist.calculate_edgelist(
weight_cols=self.weight_cols,
norm_type=self.edges_norm_type,
)
def _get_option(self, name: str, settings: dict[str, Any]) -> str:
if name in settings:
return self._to_json(settings[name])
return "undefined"