Source code for retentioneering.data_processors_lib.add_start_end_events

from __future__ import annotations

import pandas as pd
from pandas import DataFrame

from retentioneering.backend.tracker import collect_data_performance, time_performance
from retentioneering.data_processor import DataProcessor
from retentioneering.eventstream.types import EventstreamSchemaType
from retentioneering.params_model import ParamsModel
from retentioneering.utils.doc_substitution import docstrings
from retentioneering.utils.hash_object import hash_dataframe


class AddStartEndEventsParams(ParamsModel):
    pass


[docs]@docstrings.get_sections(base="AddStartEndEvents") # type: ignore class AddStartEndEvents(DataProcessor): """ Create two synthetic events in each user's path: ``path_start`` and ``path_end``. Returns ------- Eventstream ``Eventstream`` with new synthetic events only - two for each user: +----------------+----------------+----------------+ | **event_name** | **event_type** | **timestamp** | +----------------+----------------+----------------+ | path_start | path_start | first_event | +----------------+----------------+----------------+ | path_end | path_end | last_event | +----------------+----------------+----------------+ Notes ----- See :doc:`Data processors user guide</user_guides/dataprocessors>` for the details. """ params: AddStartEndEventsParams @time_performance(scope="add_start_end_events", event_name="init") def __init__(self, params: AddStartEndEventsParams) -> None: super().__init__(params=params) @time_performance( scope="add_start_end_events", event_name="apply", ) def apply(self, df: pd.DataFrame, schema: EventstreamSchemaType) -> pd.DataFrame: user_col = schema.user_id type_col = schema.event_type event_col = schema.event_name matched_events_start: DataFrame = df.groupby(user_col, as_index=False).first() # type: ignore matched_events_start[type_col] = "path_start" matched_events_start[event_col] = "path_start" matched_events_end: DataFrame = df.groupby(user_col, as_index=False).last() # type: ignore matched_events_end[type_col] = "path_end" matched_events_end[event_col] = "path_end" matched_events = pd.concat([matched_events_start, matched_events_end]) result = pd.concat([df, matched_events]) collect_data_performance( scope="add_start_end_events", event_name="metadata", called_params={}, performance_data={ "parent": { "shape": df.shape, "hash": hash_dataframe(df), }, "child": { "shape": result.shape, "hash": hash_dataframe(result), }, }, ) return result