Source code for retentioneering.data_processors_lib.rename_segment
from __future__ import annotations
import numpy as np
import pandas as pd
from retentioneering.backend.tracker import collect_data_performance, time_performance
from retentioneering.data_processor import DataProcessor
from retentioneering.eventstream.segments import (
SEGMENT_DELIMITER,
SEGMENT_TYPE,
_create_segment_event,
_extract_segment_values,
_get_segment_mask,
)
from retentioneering.eventstream.types import (
AddSegmentType,
EventstreamSchemaType,
EventstreamType,
)
from retentioneering.params_model import ParamsModel
from retentioneering.utils.doc_substitution import docstrings
from retentioneering.utils.hash_object import hash_dataframe
from retentioneering.widget.widgets import ListOfString, ReteFunction
class RenameSegmentParams(ParamsModel):
old_name: str
new_name: str
[docs]@docstrings.get_sections(base="RenameSegment") # type: ignore
class RenameSegment(DataProcessor):
"""
Rename segment for synthetic eventstream events.
Parameters
----------
old_name : str
Old segment name to change.
new_name : str
New segment name to set.
Returns
-------
EventstreamType
Eventstream with renamed segment.
"""
params: RenameSegmentParams
@time_performance(scope="rename_segment", event_name="init")
def __init__(self, params: RenameSegmentParams) -> None:
super().__init__(params=params)
@time_performance(scope="rename_segment", event_name="apply")
def apply(self, df: pd.DataFrame, schema: EventstreamSchemaType) -> pd.DataFrame:
old_name = self.params.old_name
new_name = self.params.new_name
hash_before = hash_dataframe(df)
shape_before = df.shape
mask = _get_segment_mask(df, schema, old_name)
df.loc[mask, schema.event_name] = df.loc[mask, schema.event_name].apply(lambda x: x.replace(old_name, new_name))
collect_data_performance(
scope="rename_segment",
event_name="metadata",
called_params=self.to_dict()["values"],
performance_data={
"parent": {
"shape": shape_before,
"hash": hash_before,
},
"child": {
"shape": df.shape,
"hash": hash_dataframe(df),
},
},
)
return df