Source code for retentioneering.data_processors_lib.add_positive_events
from __future__ import annotations
from typing import Callable, List
import pandas as pd
from retentioneering.backend.tracker import collect_data_performance, time_performance
from retentioneering.data_processor import DataProcessor
from retentioneering.eventstream.types import EventstreamSchemaType, EventstreamType
from retentioneering.params_model import ParamsModel
from retentioneering.utils.doc_substitution import docstrings
from retentioneering.utils.hash_object import hash_dataframe
from retentioneering.widget.widgets import ListOfString, ReteFunction
def _default_func(eventstream: EventstreamType, targets: list[str]) -> pd.DataFrame:
"""
Filter rows with target events from the input eventstream.
Parameters
----------
eventstream : Eventstream
Source eventstream or output from previous nodes.
targets : list of str
Condition for eventstream filtering.
Each event from that list is associated with a conversion goal of the user behaviour in the product.
If there are several target events in user path - the event with minimum timestamp is taken.
Returns
-------
pd.DataFrame
Filtered DataFrame with targets and its timestamps.
"""
user_col = eventstream.schema.user_id
time_col = eventstream.schema.event_timestamp
event_col = eventstream.schema.event_name
df = eventstream.to_dataframe()
targets_index = df[df[event_col].isin(targets)].groupby(user_col)[time_col].idxmin() # type: ignore
return df.loc[targets_index] # type: ignore
[docs]class AddPositiveEventsParams(ParamsModel):
"""
A class with parameters for :py:class:`.AddPositiveEvents` class.
"""
targets: List[str]
func: Callable = _default_func
_widgets = {"func": ReteFunction(), "targets": ListOfString()}
[docs]@docstrings.get_sections(base="AddPositiveEvents") # type: ignore
class AddPositiveEvents(DataProcessor):
"""
Create new synthetic events in paths of all users having the specified events:
``positive_target_RAW_EVENT_NAME``
Parameters
----------
targets : list of str
Define the list of events we consider positive.
If there are several target events in a user path, the event with the minimum timestamp is taken.
func : Callable, default _default_func
Filter rows with target events from the input eventstream.
Returns
-------
Eventstream
``Eventstream`` with new synthetic events only added to users who fit the conditions.
+--------------------------------+-----------------+-----------------------------+
| **event_name** | **event_type** | **timestamp** |
+--------------------------------+-----------------+-----------------------------+
| positive_target_RAW_EVENT_NAME | positive_target | min(targets) |
+--------------------------------+-----------------+-----------------------------+
Notes
-----
See :doc:`Data processors user guide</user_guides/dataprocessors>` for the details.
"""
params: AddPositiveEventsParams
@time_performance(
scope="add_positive_events",
event_name="init",
)
def __init__(self, params: AddPositiveEventsParams):
super().__init__(params=params)
@time_performance(
scope="add_positive_events",
event_name="apply",
)
def apply(self, df: pd.DataFrame, schema: EventstreamSchemaType) -> pd.DataFrame:
from retentioneering.eventstream.eventstream import Eventstream
type_col = schema.event_type
event_col = schema.event_name
func: Callable[[EventstreamType, list[str]], pd.DataFrame] = self.params.func
targets = self.params.targets
eventstream = Eventstream(
raw_data_schema=schema.to_raw_data_schema(event_index=True),
raw_data=df,
add_start_end_events=False,
)
positive_targets = func(eventstream, targets)
positive_targets[type_col] = "positive_target"
positive_targets[event_col] = "positive_target_" + positive_targets[event_col]
result = pd.concat([eventstream.to_dataframe(), positive_targets])
collect_data_performance(
scope="add_positive_events",
event_name="metadata",
called_params=self.to_dict()["values"],
performance_data={
"parent": {
"shape": df.shape,
"hash": hash_dataframe(df),
},
"child": {
"shape": result.shape,
"hash": hash_dataframe(result),
},
},
)
return result